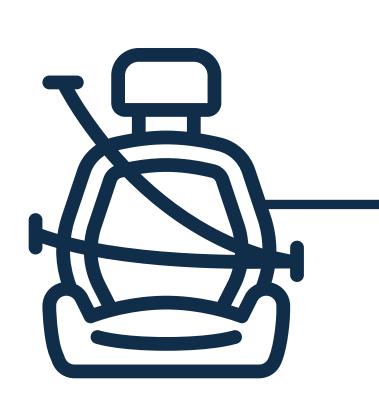


grande quantidade de plásticos nos carros de hoje é uma boa notícia para oficinas de funilaria e pintura, permitindo uma oportunidade adicional de negócio e atrair novos clientes. Com esses materiais, é possível atingir o uso ideal da capacidade da oficina. Além disso, é um trabalho favorável ao meio ambiente, uma vez que muitas peças de plástico podem ser reparadas em vez de substituídas.

O plástico tem sido usado em carros desde a década de 1950, mas são as inovações mais recentes que estão realmente mudando a indústria... e para melhor. Na década de 1960, surgiram os chamados plásticos de engenharia e, entre os anos de 1973 e 1979, as grandes crises do petróleo fizeram com que a indústria automobilística começasse a substituir materiais tradicionais por peças produzidas em plástico. Foram desenvolvidos polímeros de alto desempenho, com maior resistência mecânica, térmica e química. E essa mudança tornou o veículo 30% mais

leve, consumindo menos combustível e, portanto, reduzindo a emissão de poluentes na atmosfera. A indústria automotiva já é o quarto setor em importância em termos de consumo de plástico.

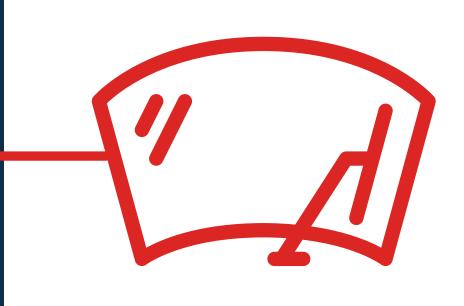
O setor automotivo vem experimentando uma incorporação gradual desses materiais. Hoje, um carro de tamanho médio tem aproximadamente 120 kg de seu peso em plástico. No automóvel, o material plástico oferece versatilidade para um design inovador e, ao mesmo tempo, absorção de impacto em colisões, contribuindo para tornar os veículos mais seguros.

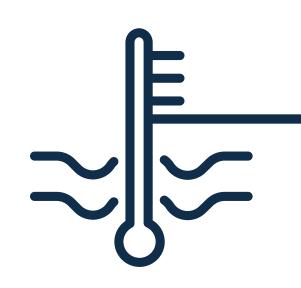

TIPOS DE PLÁSTICO

Um mesmo tipo de plástico pode ser ligeiramente modificado de forma a ter diversas aplicações. Na indústria automobilística, o termoplástico é o tipo utilizado em mais de 90% dos veículos da atualidade. E ele se divide nos seguintes subgrupos:

Poliamida (PA)

Utilizada em coletores de admissão, tampas de comando de válvulas, maçanetas, componentes do espelho retrovisor, tubos de freio, sistema de refrigeração e componentes do airbag.

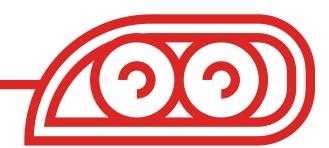



Poliacetal (POM)

Usado em unidades de envio de combustível, engrenagens do cinto de segurança, clipes, componentes das fechaduras e roldanas de vidro.

Polibutileno tereftalato (PBT)

Para limpadores de parabrisa, maçanetas, carcaças dos faróis e componentes dos bicos injetores.

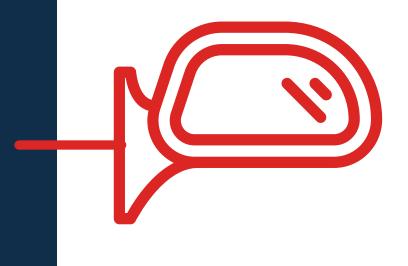


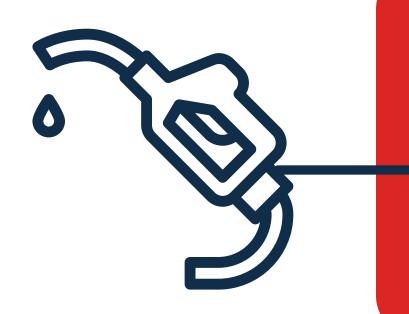
Poliftalamida (PPA)

Em carcaças de bomba d'água, termostatos, galeria de injeção.

Policarbonato

Utilizado em lentes de faróis.



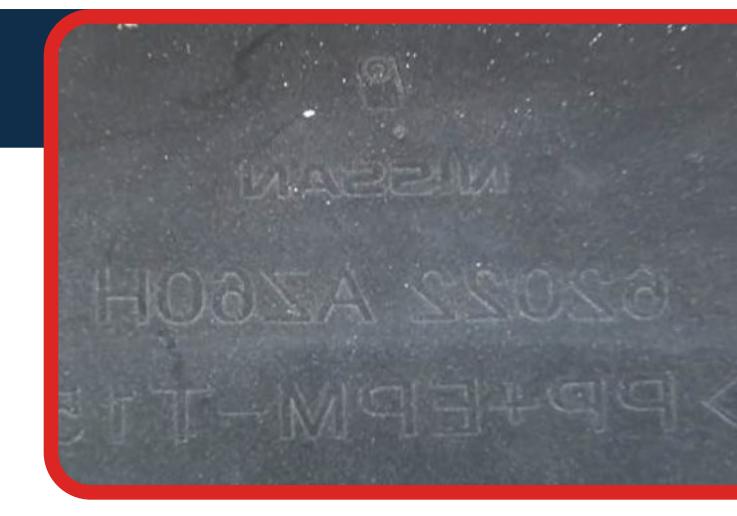

Polipropileno (PP)

Usado em para-choques, painéis, caixas de bateria.

Acrilonitrila-Butadieno-estireno (ABS)

Para grades, componentes do painel, carcaças de espelho.

Polietileno de alta densidade (PEAD)


Utilizado em tanques de combustível e reservatórios.

PASSO A PASSO

Muito usado na produção dos para-choques automotivos, o termoplástico pode ser reparado mesmo quando tiver sofrido ruptura ou trincas. As técnicas podem variar de acordo com o código de identificação de cada plástico: soldagem plástica, técnicas de adesão e de soldagem química. Lembrando que é fundamental o uso de equipamentos de segurança, os EPIs: luvas de vaquetas, luvas de látex, máscaras com carvão ativado, óculos de proteção e protetor auricular. Aqui vamos exemplificar o passo a passo de uma soldagem plástica com técnicas de adesão.

1°

Verifique o código de identificação do plástico posicionado na parte interna da peça.

2

Limpe a superfície a ser soldada, usando desengraxante antiestático e pano que não solte fibras (pode ser papel também).

3

Remova a tinta.

4° e 5°

Novamente limpe a superfície.

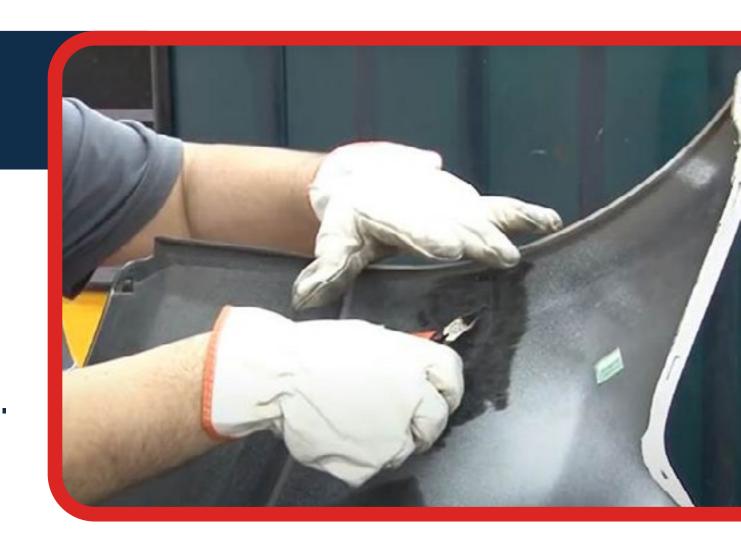
Faça um furo (de 2 mm ou 3mm) no final da trinca

para evitar a sua propagação, além de eliminar as tensões internas que o material apresenta.

6

Faça um desnível em "V" na parte externa para melhorar a penetração da soldagem. Com a ajuda

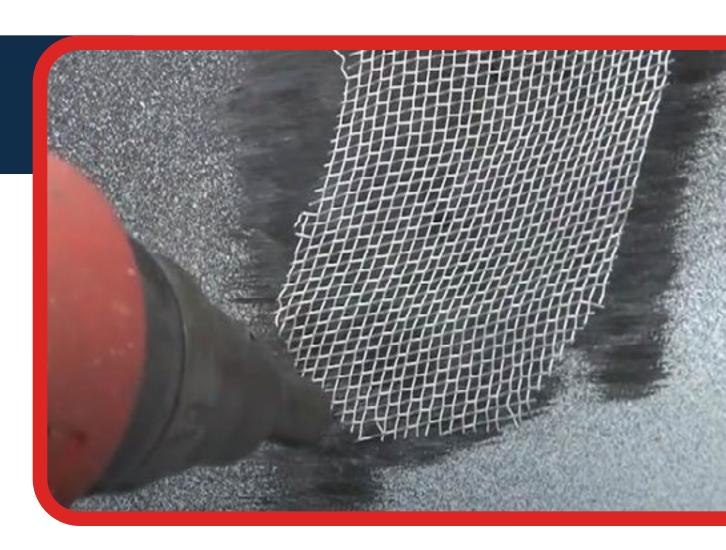
de um raspador ou de um cortador frontal, a fenda em "V" será chanfrada, aumentando também a zona de contato entre o material de base e o material de entrada. O "V" terá um ângulo aproximado entre 60 e 70 graus, e sua profundidade não será maior que 2/3 da espessura do material. É aconselhável começar com cerca de 10 mm na frente do início da fissura e ir aprofundando progressivamente.


7

Utilizando um clipador térmico na parte interna da peça, prenda as duas partes da trinca. Esse método alinha a ruptura.

8

Após o resfriamento utilizando alicate, corte as pontas dos grampos.


9

Corte a tela de aço ou alumínio de acordo com os danos

10

Com o auxílio de um soprador térmico, faça a fundição da tela no plástico na parte interna da área a ser reparada,

utilizando uma espátula para pressionar a tela na peça aquecida. Nesse procedimento, use

tacos e apoie a peça com a mão para não deformar o plástico.

Com um bocal em forma de cunha, a soldagem autógena é realizada ao longo de todo o reparo. É melhor fazêla continuamente, deslizando a tocha do início até o final da área chanfrada. O bocal será inclinado, formando um ângulo de cerca de 20 graus com a superfície da peça. Isto torna mais fácil para o ar quente amaciar o plástico sob o bocal, permitindo que o material, em um estado pastoso, seja unido pela pressão exercida pelo próprio bocal. Com essa operação, as bordas da fissura são mantidas alinhadas e unidas, facilitando a execução da soldagem final.

11

Após a fusão da tela na parte interna, faça a soldagem na parte externa utilizando vareta de solda plástica.

Utilize o soprador térmico com bico

específico para cada soldagem. Preencha a fenda do dano passando quantas camadas forem necessárias.

Essa é a soldagem que fornecerá a resistência mecânica necessária ao reparo.

A regra mais importante na soldagem de plásticos é que só é possível soldá-los com o mesmo material, então o primeiro passo será identificá-lo e selecionar o material de entrada correspondente.

12°

Após o resfriamento, faça a raspagem com uma rasquete para remover o excesso de material e dar

acabamento ao reparo. E pronto: após esses procedimentos, inicia-se o processo de preparação e pintura.

SOLDA INSTANTÂNEA

O que há de mais moderno em reparação de plásticos automotivos são as soldas plásticas instantâneas. Os materiais de reparação de alta tecnologia fornecem uma solução rápida para o trabalho em fissuras e furos. Reparos que em média levariam quatro horas podem ser realizados em 10 minutos. São produtos bicomponentes que possuem reações químicas instantâneas.

FRANCISCO ASSUNÇÃO Analista de Treinamento Técnico